
concentrations of C = 0.2% (the hydrodynamic resistance drop at C = 0.2% was A%/% = 32%). 
The measurements showed that the tendency occurred in the mean-velocity-profile distribution 
for aqueous dithalan solutions as for methaupon solutions. 

Thus the foregoing experiments have shown that the optical Doppler velocity meter (laser 
anemometer) may be used for studying turbulent flows containing surface-active additives, 
provided that the solutions of these are sufficiently transparent. 

NOTATION 

u, mean longitudinal velocity component; u,, dynamic velocity; Re = u,y/~, Reynolds num- 
ber; y, distance from, wall; v, kinematic viscosity; C, concentration; A%/% = [(%1 -- %2)/%:]" 
100%, reduction in hydrodynamic resistance; %1, resistance for the flow of the pure solvent; 
%~, resistance for the flow of the solvent containing SAS additives; AP, pressure drop; h, 
height of channel. 
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A SOLUTION METHOD FOR PROBLEMS OF FREE CONVECTIVE 

MOTION IN LIQUIDS 

Z. P. Shul'man, E. A. Zal'tsgendler, 
and V. I. Baikov 

UDC 536.25:532.135 

The solution of the problem of free convective motion of liquids with high 
Prandtl and Schmidt numbers is obtained in the form of inner and outer asymp- 
totic solutions which are joined together. Boundary conditions of the first 
or second kind are considered. 

The interest in problems of free convection in liquids has definitely increased in re • 
cent years [i, 2]. This is due to the growing importance of liquids (Newtonian, as well as 
non-Newtonian) in chemical industry and power engineering. In the present article a solution 
method is described for the problem of free convective motion of liquids close to bodies im- 
mersed in the latter. The analysis is carried out by considering an example of a "power 
series" model of a liquid. In this case the dimensionless equations for stationary concentra- 
tion thermally free convection in the boundary-layer approximation with the consistency coef- 
ficient dependence on heat taken into account are of the following form: 

OU O [ ~ OU n ' l  OU ] 
Ou _ v = ~ (0~) ! i (O~ -~ KIOo) Mx~ ; 

" 0-7 oy oy lay ay 

Ou O v _ O; ( i )  

Ox Oy 

O 0 1  0 0 1  1 0~01 
U - -  U - -  - -  

Ox ay P q  Oy 2 ' 
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0 0 ~  00.2  1 0 2 0 2  u ~) -- 
Ox Og Pr z Og ~ 

with the boundary conditions of the first kind, 

where 

u = O ,  v~=O, 0 1 =  1, Oz= 1 for y = O ;  

/l----~0, 01---~0 , 02---~0 for y--+oo, 

1 

KI = sign (C o -  C=) ( Gr2 ~ 2-n 
\ Grl / ' 

(2) 

and the geometric parameters M and ~ are in special cases as follows: M = i, B = 0 for a 
vertical plate; M = cos ~, ~ = 0 for a wedge; M = i, ~ = i for a plane critical point. 

The solving of the system of equations (i) under the boundary conditions (2) is mathe- 
matically very difficult; in particular, (1)-(2) have no self-simulating solutions. Neverthe- 
less, by using a physical property, namely, that the Prandtl (Prl) or Schmidt (Pr=) numbers 
are higher, a considerable simplification of the problem is possible. In this case the thick- 
ness of the thermal and the concentration boundary layers are much smaller than the thickness 
of the dynamic layer, which enables one to obtain a solution by using a method of asymptotic 
expansions joined together. 

By changing over to inner variables one has for the inner asymptotic expansion of the 
system of equations (i) 

0 I~ ( O 1 ) ~ - n - - 1 0 U l  ] .~ - (Ol~-' KIOo)Mx~ = O; 
Ogl ogl Ogl - 

OUl O~)l - -  O; 

OX Oy 1 

001 OOa Pr i 0"-01 . 
Ul ON Vl - -  o , Ob't Prl 09-1 

002 002 Pr i O~O,, 
Ul OX ' VI - -  ~ ~ - '  

091 Pr~ Og~ 

(3) 

where 

Prf = rain {Pr 1, Pr2}. 

The problems of free convection also reduce to the system (3) close to the vertical 
cylinder (M = i, ~ = 0) or to the cone (M = [2 sin ~]n/= cos ~, B = n/2) of the critical 
point in space [M = 2(n+i/=), ~ = (n + 1)/2]. One also has the continuity equation 

and, in addition, one introduces 

O (ru)- -  O (rv) = 0  

x 

= ur, x =  j" r (x) dx. 
0 

The condition u + 0 for y ~ ~ in the case of inner asymptotic expansion must be replaced 
by a condition that u: is bounded or, in view of physical considerations, by an equivalent 
condition ~u:/3yx + 0. Thus the boundary conditions for the system (3) are 

u~=O,  v 1 = 0 ,  @1-  1, |  1 for g l = O ,  
(4) 

OUl --+0, 01-'+0 , 0~--+0 for yl--+oo. 
Og~ 

In the case of the outer asymptotic expansion (01 = 0, 0= = 0) one arrives at the follow- 
ing system of equations (in outer variables): 
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Ou. . duo 0 [ ~Ou~ ~-~ Ou2 1 
Ox Oy 2 Oy 2 Oy~ Oy 2 

Ou~ Or2 (5)  
~ --0.  

Ox Oy 2 

In this case the condition of adhesion on the surface cannot be satisfied. Another con- 
dition on the surface is found by using the "principle of joining together in the limit" [4]. 
Then the boundary conditions for the system (5) become 

where 

u~=U, v e t O  for y 2 = 0 ;  u2--+0 for y2-~-oo; (6) 

U = lira ul (x, Yl)" 

The representation of the problem (i), (2) in the form of inner (3), (4) asymptotic ex- 
pansion and of outer (5), (6) greatly simplifies the problem. In particular, the problem (3), 
(4) admits self-simulating solutions in contrast to the original problem (4). One has the 
following system of differential equations: 

with the boundary conditions 

d 

dq 

01' 

e ;  

-- [co (ol)',F/'-'  f~l - -  o l  K1% = o; 

Prl  (sign f]) [10~ = 0; 

Pr., (sign f'O flO; = 0 
Pr~ 

[1 = 0, fl = 0, 01 = 1, @2 = 1 for I h = 0; 

[]--+0, 01-->'0, @2-->'0 for ~i'-+00. 

(7) 

(8) 

An exact solution of the problem (7)-(8) was obtained in [4]. The inner asymptotic ex- 
pansion enables one to find the characteristics of the heat and mass exchange and the surface 
friction, as well as the temperature and the concentration profiles. However, to obtain the 
complete profiles of the velocities one must also find the outer asymptotic expansion. It 
follows from the "principle of joining together in the limit" and from the obtained solution 
for the inner asymptotic expansion that 

n + l  n+l+21~ 2 n--I 
n I = U = [] (oo) pr~n+lx" 3n+, Man+l ( 3 -7 1 '~an+t 

\ 2n  + i---- ~ /  " 
(9) 

The going over in (5) and (6) to flow functions, the requirement of constant conformal 
invariance of the obtained system of equations relative to the linear one-parameter transfor- 
mation group [5], and the use of (9), yield the self-simulating variables, 

where 

n'--}-2n--l--2~,(2--n) 

1] 2 _~_ C l y 2 X  ( 3 n + l ) ( n + l )  ; 

2[n (n+2)@13(2n-l) ] 

[2 012) = C,,~o_x (3n§ 

2--n l ~ 2 n  n@l 2 \ n--1 

' ; , ~' too' Pr,a--Z+-IM 3n+l I' 3t~ -~- 1 / ~  
C x =  D~ ~I C o =  D'~ +1" D l - : t l t  J ~ \ ,2 t~-@l-k[5)  ' 

(io) 

which reduce the problem (5),(6) to a single nonlinear differential equation: 

n @ 1 @ 2~ (f~)2 + 2 [n (n@2)--~  (2n-- l ) ]  f~f2 = 0 
3n + 1 (3tz + 1)(n + 1) 

(il) 
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Fig. i. Profiles of velocities for the outer asymptotic 
expansion: a: i) n = 0.5; 2) n = 0.75; 3) n = 1.0 (8 = 
0); b: !) B = 0; 2) B = i (n = 0.75). 

f s I 

~75 

10 

Fig. 2. Profiles of temperatures (concentrations) and of 
velocities: i) inner asymptotic expansion; 2) outer asymp- 
totic expansion; 3) exact solution. 

with the boundary conditions 

&(0)=0, f~(0)=l, f~(oo)-~0 (12) 

The p r o b l e m  ( i 1 ) ,  (12) was s o l v e d  n u m e r i c a l l y  on t h e  " M i n s k - 2 2 "  e l e c t r o n i c  c o m p u t e r .  
Some r e s u l t s  a r e  shown in  F i g .  1. An i n c r e a s e  i n  t h e  p s e u d o p l a s t i c  p r o p e r t i e s  (a r e d u c t i o n  
in  t h e  p a r a m e t e r  o f  n o n - N e w t o n i a n  b e h a v i o r )  r e s u l t s  i n  g r e a t e r  t h i c k n e s s  o f  t h e  dynamic  b o u n -  
d a r y  l a y e r  in  s e l f - s i m u l a t i n g  v a r i a b l e s  ( F i g .  l a ) .  The g e o m e t r i c  p a r a m e t e r  ~ shows h a r d l y  
any effect on the velocity profiles (Fig. ib). 

In Fig. 2 the profiles of temperatures (concentrations) are shown, as well as velocities 
found by using the above-described procedure; they were determined by solving the complete 
problem (i), (2) for n = i, Prl = Pr2 = i00, KI = 0, M = i, ~ = 0 [for n = i, the problem 
(i), (2) admits self-simulating solutions]. It can be seen from the graphs that the results 
agree very satisfactorily; for example, the difference between the characteristics of heat 
and mass exchange and of friction nowhere exceeds 3.5% (the constituent profile of the veloci- 
ties is obtained from the intervals of profiles of the inner and outer asymptotic expansions 
up to their point of intersection). For higher numbers Pr k (k = i, 2) the error in the de- 
termination of both the characteristics on the surface and the temperature profiles, concen- 
trations and velocities is reduced. 

It should be mentioned that the solution of the problem (I), (2) is of universal charac- 
ter as regards the Prandtl and Schmidt numbers, The Grashof numbers (Gr~, Gr2), and the shape 
of the heat-dependent function ~(9~). 

In the case of electrical heating of the surfaces and in a number of other cases of ther- 
mal convection it is not the surface temperature which is known or given but the heat flow, 
that is, the boundary conditions of the second kind are realized. In this case one can also 
use the method of fitted asymptotic expansions. For the internal asymptotic expansion in the 
case of a constant consistency coefficient the system of equations is of the form (3) [if one 
sets 92 = 0, Pri = Prl, m(01) = i] with the boundary conditions 
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u 1 = 0 ,  v 1 - 0 ,  001 = - - 1  for Yl'--O; 
Oy~ 

Oux ~-0, 01-+0 for Y t ~ ~ 1 7 6  
OYx 

(13) 

where 

y = .  
y ,  1 n [ ] 1 ! n+2 

Gr~ ~4 Pr~+2; u 1 = u '  g f3xL~q~ - TGr~(~+4)Pr~"+2; [ J L ~ 

I n 1 3 2(n+l} 

O1 = ( T - -  T . )  L G r ~ + 4 : p r 3 n % 2 ;  vl = o, [ g,lL2qo ] ,  T Qr~(n+4) Pr 

For the external asymptotic expansion the equations are again of the form (5) with the 
boundary conditions (6). The internal asymptotic expansion possesses a self-simulating solu- 
tion [6]: the system of ordinary differential equations 

Z!"-' if '  + e = 0; 
(14) 

~' + he' ~ -  ~ f~g = o 
2 ( n +  1) + 

and the  boundary c o n d i t i o n s  

/ , = 0 ,  [ ] = 0 ,  g ' = - - I  for lh=O;  [~----~0, g---~O for ~t--~eo. (15) 

The numerical solution of the problem (14), (15) was obtained by using a modified New- 
ton's method described in [6]. In this case the outer limit for the inner asymptotic expan- 
sion is given by 

n+2 r n+2( l+~)  o 

U=f](oo)Pr~n+2 x s.§ M~n~2[_ 3 n + 2  ~]"+~ 3 n + 2  

[ 2 ( n +  1 )+  

The proceeding to stream functions in (5) and (6), as well as the requirement of constant 
conformal invariance of the obtained system of equations relative to a linear one-parameter 
transformation group, results in the self-simulating variables 

where 

n2q-3n--2--2~ (2--n) 
rl z = Czy~x (3n+2)(n+O ; 

2[n(n.~3)+fS(2n--l)] (16) 

2--n 1--2n n+2 2 "7 n+2 
Dn+l " Dn+l Prl3t~ M3h+2 [ 3n+2 ]a~-~ 

C a =  e , C4=  2 ; Dz=fl(oo)  2 ( n ' l ) + ~  

which reduce  the  problem of (5 ) ,  (6) to  a n o n l i n e a r  d i f f e r e n t i a l  e q u a t i o n :  

~,",,-1r n + 2(1 ~[5) ( [ ~ ) ~  2[n(n+3)+~(2n--1)] [j,~ 0 (17) 
rb 112i 12 -~- 

3n q- 2 (n + 1) (3n -~ 2) 
wi th  (12) as boundary c o n d i t i o n s .  

In F ig .  3 some r e s u l t s  a r e  shown of the  numer ica l  s o l u t i o n  of  the  d i f f e r e n t i a l  equa t ion  
(17) s u b j e c t  to boundary c o n d i t i o n s  (12) .  The parameter  o f  non-Newtonian b e h a v i o r  and the  
geomet r i c  f a c t o r  e x e r c i s e  in  q u a l i t a t i v e  terms the  same e f f e c t  whether  one dea l s  wi th  boun- 
dary  c o n d i t i o n s  of  the  f i r s t  or  the  second kind.  

I t  i s  n o t e d ,  in  c o n c l u s i o n ,  t h a t  by r e p r e s e n t i n g  the  s o l u t i o n  by inner  and o u t e r  asymp- 
t o t i c  expans ions  j o i n e d  t o g e t h e r  one i s  a l s o  a b l e  to c o n s t r u c t  e f f i c i e n t  approximate  s o l u t i o n s  
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Fig. 3. Velocity profiles for the outer asymptotic expan- 
sion: a: i) n = 0.5; 2) n = 0.75; 3) n = 1.0 (B = 0); b: 
i) ~ = 0; 2) ~ = 1 (n = 0.75). 

NOTATION 

x = x'/L; y = (y'/L)Gr~/2(n+1); Yl = YPr~/(3n+1)~ y2 = y, dimensionless coordinates; x', 
y', dimensional coordinates; u = u'[Lg ~z(To -- T~)] -I/=, v = v'[Lg ~1(To -- T~)] -I/=, 

Gr ~/2(n+i) (n+1) / (3n+i) , ul = uPr i , u= = u, vl = vPri (=n+1)/(3n+1), v= = v, dimensionless 

velocities; u', v', dimensional velocities; L, characteristic length; ~, coefficient of 

volume expansion; Pr = (pcp/%)L(1-n)/(n+0(p/k) -2/(n+I) [L~zg(To -- T=)]3Cn-z)/2(n+z) Pr = 

(pcp/D) (p/k)-[ =/(n+z)] (1-n)/(n+~)[LB~g(r o -- r=)]3(n-z)/=(n+z), modified Prandtl and Schmidt 

numbers, respectively; Grl = (p/k)=Ln+2[~zg(To -- T~)] =-n, Gr= = (0/k)=Ln+2[~2gICo -- C=I] =-n, 
modified Grashof numbers; k, consistency coefficient; n, parameter of non-Newtonian behavior; 
~, stream function; ~(@z), heat-dependent function; @i = (T -- T=)/(To -- T~), @2 = (C -- C=)/ 
(Co -- C~), dimensionless temperature and concentration, respectively; To, Co, T~, C~, ab- 
solute temperatures and concentrations on the wall and for y § =; qo, heat flow on the sur- 
face; n, f(n), g(n), self-simulating variables. 

i, 
2. 
3. 
4. 
5. 
6. 

LITERATURE CITED 

A. D. Id, in: Achievements in Heat Transfer [Russian translation], Mir (1970). 
A. Emery, K. Tsi, and I. Dale, Teploperedacha, No. 2 (1971). 
M. Van-Dyke, Perturbation Methods in Fluid Mechanics, Academic Press (1964). 
Z. P. Shul'man, E. A. Zal'tsgendler, and V. I. Baikov, Inzh.-Fiz. Zh., 27, No. 3 (1974). 
S G. Lee and W. F. Ames, Amer. Inst. Chem. Eng. J., 12, No. 4 (1966). 
Z. P. Shul'man, E. A. Zal'tsgendler, and V. I. Baikov, Dokl. Akad. Nauk BelorusSSR, 19, 
No. i (1975). 

1415 


